The Electron-Phonon Interaction in the Presence of Strong Correlations
نویسنده
چکیده
We investigate the effect of strong electron-electron repulsion on the electronphonon interaction from a Fermi-liquid point of view. In particular we show that the strong interaction is responsible for vertex corrections, which are strongly dependent on the vF q/ω ratio, where vF is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. These corrections generically lead to a strong suppression of the effective coupling between quasiparticles mediated by a single phonon exchange in the vF q/ω ≫ 1 limit. However, such effect is not present when vF q/ω ≪ 1. Analyzing the Landau stability criterion, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase separation instability. A detailed analysis is then carried out using a slave-boson approach for the infinite-U three-band Hubbard model describing the basic structure of a CuO2 plane in copper oxides. In the presence of a coupling between the local hole density and a dispersionless optical phonon, we explicitly confirm the strong dependence of the hole-phonon coupling on the transferred momentum versus frequency ratio. We also find that the exchange of phonons leads to an unstable phase with negative compressibility already at small values of the bare hole-phonon coupling. Close to the unstable region, we detect Cooper instabilities both in sand d-wave channels supporting a possible connection between phase separation and superconductivity in strongly correlated
منابع مشابه
Bias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)
The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...
متن کاملنقش دینامیک شبکه در ابررسانای La2-xBaxCuO4 به روش DFT
Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of p...
متن کاملنرم شدگی فونونهای انرژی بالا با گذار عایق - ابررسانا در سیستم ابررسانای Ba1-xKxBiO3
Single crystals of Ba1-xKxBiO3 compound for 0 < x <0.6 from insulator to superconducting region have been grown by electrochemical method. The crystals have been characterized by powder x-ray diffraction and Laue x-ray to determine the crystal structure, formed phases and potassium concentration. Inelastic x-ray scattering spectrum of the crystals has been studied to investigate the phonon pro...
متن کاملInterplay between electron-phonon and Coulomb interactions in cuprates
Evidence for strong electron-phonon coupling in high-Tc cuprates is reviewed, with emphasis on the electron and phonon spectral functions. Effects due to the interplay between the Coulomb and electron-phonon interactions are studied. For weakly doped cuprates, the phonon self-energy is strongly reduced due to correlation effects, while there is no corresponding strong reduction for the electron...
متن کاملA NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION
A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994